On the validity of the two-fluid model for simulations of bubbly flow in nuclear reactors

Henrik Ström¹, Srdjan Sasic¹, Klas Jareteg², Christophe Demazière²

¹Division of Fluid Dynamics, Department of Applied Mechanics
²Division of Nuclear Engineering, Department of Applied Physics
Chalmers University of Technology
SE-412 96 Göteborg
SWEDEN

Corresponding author e-mail address: henrik.strom@chalmers.se
Background

• Two-phase simulations for a full core

• Coupling with heat transfer

• 3D

• Transient

• Use of “new and innovative modelling strategies” to contribute to the development of high-fidelity simulations on a longer run

DREAM4SAFER
Development of Revolutionary and Accurate Methods for Safety Analyses of Future and Existing Reactors
Challenges

• The grid is too coarse

• Meso-scale structures cannot be resolved

• The governing equations must account for this

• In this project, the closures to the governing equations are to be derived from highly resolved numerical solutions to the “microscopically correct” governing equations
Scale terminology

- Two-fluid model with coarse resolution, *macroscale*
- Two-fluid model with fine resolution, *microscale*
- Bubbles in a continuous liquid
- Gas-liquid interface
The two-fluid model

- Continuity equation for the dispersed (bubbly) phase:
 \[
 \frac{\partial}{\partial t} (\alpha_b \rho_b) + \nabla \cdot (\alpha_b \rho_b \mathbf{u}_b) = 0
 \]

- Volume fraction field of the continuous (liquid) phase:
 \[
 \alpha_l = 1 - \alpha_b
 \]

- Momentum balance equations:
 \[
 \frac{\partial}{\partial t} (\alpha_k \rho_k \mathbf{u}_k) + \nabla \cdot (\alpha_k \rho_k \mathbf{u}_k \mathbf{u}_k) = -\alpha_k \nabla p + \nabla \left[\alpha_k \mu_k \left(\nabla \mathbf{u}_k + \nabla \mathbf{u}_k^T \right) \right] + \alpha_k \rho_k \mathbf{g} + K (\mathbf{u}_q - \mathbf{u}_k)
 \]

\[
K = \alpha_l \alpha_b \frac{18 \mu_l}{d_b^2} \frac{C_D Re_p}{24}
\]
Computational setup

- Fully periodic 2D domain
- Aspect ratio = 4
- Domain size: 0.1 x 0.4 (m)
- Mesh: 64 x 256
- Gravity acts in the negative vertical direction
- A pressure drop is applied in the opposite direction of gravity to drive the flow at a relevant velocity
- Total simulation time is set to 4 s (corresponds to >40 flow-through times)
Gas-solid flow

- The setup is used to simulate an established gas-solids case from Benyahia & Sundaresan (2012)
- Good agreement is found
- A time-resolved uniformity index is defined:

\[
\Phi(t) = \frac{\alpha_{q,\text{max}} - \alpha_{q,\text{min}}}{\alpha_{q,\text{avg}}}
\]

Snapshots of discrete phase volume fraction at \(t = 2.5 \) s (left) and 3.5 s (right). Blue and red indicate dilute and dense (volume fraction of 0.2 and higher) flow regions.

Benyahia & Sundaresan, Powder Technology (2012)
• When the same case is rerun with only material properties changed (to a typical liquid-gas flow), no meso-scale structures appear.

• However: if the bubble size is changed to obtain the same terminal velocity as in the gas-solids case (bubble diameter increases from 75 to 680 \(\mu \text{m} \)), meso-scale structures appear (but seem to be of different character).
Mesh resolution

- Mesh resolution has a significant influence on the appearance of meso-scale structures
Influence of α_{avg}

- Meso-scale structures seem to appear only at high enough average bubble loading ($\alpha_{\text{avg}} = 0.05$ or higher)

- These results are consistent with literature investigations on the stability of uniformly bubbling suspensions (e.g. LBM w/ lift force by Sankaranarayanan & Sundaresan, CES 2002) where stability was lost at $\alpha_{\text{avg}} = 0.0257 - 0.0334$
Influence of walls

- Bounding the geometry with free-slip walls in the horizontal directions has a significant influence on the appearance of meso-scale structures.
Inconsistencies with RANS

- Employing k-\(\varepsilon\) together with the two-fluid model suppresses the appearance of meso-scale structures

- In such a setup, there is an inconsistent mixing of scales over which averaging is performed
Conclusions

- Meso-scale structures can appear under conditions relevant to nuclear reactors if:
 - The mesh resolution is fine enough
 - The temporal resolution is fine enough
 - The bubble size is large enough
 - The steam void fraction is large enough

- Meso-scale structures are dampened/suppressed by:
 - The presence of walls
 - The modelling of turbulence via an eddy viscosity

- These results have been corroborated by comparisons with a different computational technique (MP-PIC) and with two different CFD codes
Thank you for your attention!

DREAM4SAFER
Development of Revolutionary and Accurate Methods for Safety Analyses of Future and Existing Reactors

The computations in this work were partially performed on C3SE computing resources.
The interphase momentum exchange is significantly affected by the sub-grid homogeneity of the dispersed phase distribution.

The presence of meso-scale structures mean that:

- The sub-grid distribution of the dispersed phase is inhomogeneous
- There are significant fluctuations in the local slip velocity
- The effective interphase momentum transfer is lower than in the uniform state

The combined presence of meso-scale structures and unresolved geometry mean that:

- Phase segregation may be enhanced
- Effective interphase transfer terms are affected
The two-fluid model

- Continuity equation for the dispersed (bubbly) phase:
 \[
 \frac{\partial}{\partial t} (\alpha_b \rho_b) + \nabla \cdot (\alpha_b \rho_b \mathbf{u}_b) = 0
 \]

- Volume fraction field of the continuous (liquid) phase:
 \[
 \alpha_l = 1 - \alpha_b
 \]

- Momentum balance equations:
 \[
 \frac{\partial}{\partial t} (\alpha_k \rho_k \mathbf{u}_k) + \nabla \cdot (\alpha_k \rho_k \mathbf{u}_k \mathbf{u}_k) =
 - \alpha_k \nabla p + \nabla \cdot \left[\alpha_k \mu_k \left(\nabla \mathbf{u}_k + \nabla \mathbf{u}_k^T \right) \right] + \alpha_k \rho_k \mathbf{g} + K (\mathbf{u}_q - \mathbf{u}_k)
 \]
 \[
 K = \alpha_l \alpha_b \frac{18 \mu_l}{d_b^2} \frac{C_D \text{Re}_p}{24}
 \]

- No discrete phase pressure – to avoid sensitivity to such model parameters
- The isotropic contribution to the discrete phase stresses comes from the shared pressure field
- The deviatoric contribution comes from the product of the discrete phase velocity gradients with the continuous phase viscosity
Mesh resolution

- Mesh resolution has a significant influence on the appearance of meso-scale structures

<table>
<thead>
<tr>
<th>Mesh</th>
<th>$d_p/\Delta x$</th>
<th>$\Delta x/d_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x32</td>
<td>0.0544</td>
<td>18.4</td>
</tr>
<tr>
<td>16x64</td>
<td>0.1088</td>
<td>9.2</td>
</tr>
<tr>
<td>32x128</td>
<td>0.2176</td>
<td>4.6</td>
</tr>
<tr>
<td>64x256</td>
<td>0.4352</td>
<td>2.3</td>
</tr>
<tr>
<td>128x512</td>
<td>0.8704</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The Kolmogorov length scale is approximately $5d_p$
Temporal resolution

- Approximate magnitude and overall qualitative behavior of Φ converged at a time step of 10^{-4} s
Influence of walls

- Bounding the geometry with free-slip walls in the horizontal directions has a significant influence on the appearance of meso-scale structures.

<table>
<thead>
<tr>
<th>Domain</th>
<th>$d_p/\Delta x$</th>
<th>$\Delta x/d_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm</td>
<td>0.4352</td>
<td>2.3</td>
</tr>
<tr>
<td>5 cm</td>
<td>0.8704</td>
<td>1.1</td>
</tr>
<tr>
<td>1 cm</td>
<td>4.352</td>
<td>0.23</td>
</tr>
</tbody>
</table>

![Graph](image)
Influence of walls

- No-slip walls create steep gradients and cause (somewhat) different behavior

<table>
<thead>
<tr>
<th>Domain</th>
<th>Liquid</th>
<th>Bubbles</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>Free slip</td>
<td>Free slip</td>
<td>64x256</td>
</tr>
<tr>
<td>1 cm</td>
<td>No slip</td>
<td>Free slip</td>
<td>128x512</td>
</tr>
</tbody>
</table>

- Lift forces on bubbles in the near-wall region (currently not taken into account) are also known to affect phase separation
Scale terminology

Two-fluid model with coarse resolution

macroscale

The mesoscale structures:

- Arise due to local instabilities
- Characteristic sizes $O(10-100d_p)$
- Can be captured by a transient two-fluid model

Figure 1. Instantaneous greyscale plots of solids volume fraction.

Two-fluid model with fine resolution

microscale